Finitely semisimple spherical categories and modular categories are self-dual

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely semisimple spherical categories and modular categories are self - dual

We show that every essentially small finitely semisimple k-linear additive spherical category in which k = End(1) is a field, is equivalent to its dual over the long canonical forgetful functor. This includes the special case of modular categories. In order to prove this result, we show that the universal coend of the spherical category with respect to the long forgetful functor is self-dual as...

متن کامل

On the Classification of Non-self-dual Modular Categories

We classify pseudo-unitary modular categories of rank at most 5 under the assumption that some simple object is not isomorphic to its dual. Our approach uses Gröbner basis computations, and suggests a general computational procedure for classifying low-rank modular categories.

متن کامل

Finitely Accessible Categories, Generalized Module Categories and Approximations

We review some properties of finitely accessible categories related to approximations, and we analyze the relationship between approximations in a finitely accessible additive category and in its associated generalized module category.

متن کامل

Covers in finitely accessible categories

We show that in a finitely accessible additive category every class of objects closed under direct limits and pure epimorphic images is covering. In particular, the classes of flat objects in a locally finitely presented additive category and of absolutely pure objects in a locally coherent category are covering.

متن کامل

A construction of semisimple tensor categories

Let A be an abelian category such that every object has only finitely many subobjects. From A we construct a semisimple tensor category T . We show that T interpolates the categories Rep(Aut(p), K) where p runs through certain projective pro-objects of A. This extends a construction of Deligne for symmetric groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2009

ISSN: 0001-8708

DOI: 10.1016/j.aim.2009.03.002